Bisphosphonic Compounds V. Selective Preparation of (Dichloromethylene) bisphosphonate Partial Esters.

Jouko Vepsäläinen*a, Heikki Nupponen^b and Esko Pohjala^b

^aUniv. Kuopio, Dept. Chem., P.O. Box 1627, SF-70211 Kuopio, Finland.

bLeiras Oy, P.O. Box 33, SF-33721 Tampere, Finland.

Key Words: Synthesis, methylenebisphosphonates, NMR

Abstract: The preparations of tri-, P,P'-di-, P,P-di- and mono partial esters of (dichloromethylene) bisphosphonic acid with good selectivity and purity have been described.

Methylenebisphosphonate (MBP) compounds, containing a stable P-C-P bridge, are widely used for the treatment of bone formation and resorption disorders. Their physicochemical interaction with bone differs greatly from one MBP tetraacid to another and no clear structure-activity correlation has been found. The known MBP compounds are very polar lowering their bioavailability and binding tightly to bone.¹ Several MBP tetraacids have been prepared², but a little is known about the preparation of pure partial esters (PE) of MBPs³ and Cl₂MBP⁴. The main difficulties in preparing PEs are the selective reactions at specific positions with desired chain shape and length. Here, we describe two selective methods to produce Cl₂MBP PEs: *via* silyl derivatives and *via* hydrolysis of branched alkyl groups over n-alkyl groups.

All the tetraalkyl Cl₂MBP starting materials were prepared using the methods described earlier.⁵ Several low-selective methods were tested like hydrolysis of symmetric MBP tetraesters 1 with either acids⁶, bases^{3a,c} or silyl intermediates^{3b,3e,7}, but all these methods produced mixtures of PEs requiring chromatographic methods or efficient fractional crystallization for separation. *E.g.* hydrolysis of 1j with water taking place stepwise mainly *via* path 1-4-7-8-9 (Scheme 1), but this was effective only in producing the symmetric P,P'-diester 7a⁸ with sufficient yield, partially succesful for 4a, 8a and 8c, but failed totally with P,P-diester 6 (see Table 1). Moreover, only branched PE derivatives were stable enough to undergo repeated alkaline conditions during separation. The other alkyl and aromatic derivatives tended to decompose gradually into monophosphorus species.

A more convenient approach to PEs is based on silvlation of methyl containing mixed tetraesters since the order of silvlation depends on the ester as follows: $Me > 1^{\circ}-alkyl > 2^{\circ}-alkyl.^{9}$ On the other hand, the hydrolysis rate of silvland alkyl esters of Cl_2MDP is as follows: $SiMe_3 > 3^{\circ}-alkyl > 2^{\circ}-alkyl > 1^{\circ}-alkyl \approx arom$.

Combining these trends provides a potential path to produce numerous PEs of Cl_2MDP . The silylation was easily accomplished by reacting the mixed tetraesters and the silyl reagent in a dry solvent for a controlled time, followed by filtration, evaporation, pH adjustiment and crystallization. The selective silylation of the methyl group resulted in even when the mixed tetraester contained ethyl groups. The main difficulties in this method were the tedious preparation of starting materials from toxic monophosphorus compounds, and the unselectivity of silylation in some cases. In contrast to the hydrolysis method, synthesis of P,P-diesters 6 was accomplished using 1b, d or e as a starting-point. The preparation of 6b from 1d via 3b was without any by-products, 6a from 1a via 3a yielded some and 6c from 1e via 3c gave many side products. In general, the more the alkyls resembled each other the more unselective is the silylation. Several potential silyl reagents were tested, but the best combination was Me₃SiCl in CH₃CN with NaI as a catalyst.

Scheme 1. Preparation of tri-, P,P'-di-, P,P-di- and mono PEs of (dichloromethylene)bisphosphonic acid.

An alternative approach was also developed to produce n-alkyl PEs. Three mixed esters 1g, h and i were prepared in order to test different hydrolysis properties of branched alkyls over n-alkyls with acids. We also attempted synthesis of Bu^t analogues instead of the Prⁱ esters, but these esters tended to decompose during preparation. We found that acid hydrolysis of Prⁱ groups from mixed esters was a practical method to produce PEs containing long n-alkyls. 1g was easily converted in to 6d, but the shorter n-alkyls resulted in complicated mixtures. This is explained by the phase transfer conditions at the event of hydrolysis. Cleavage of one Pr^i group from 1g leading to a distribution of the dihexyl and mono- Pr^i moieties of the bisphosphonate between the organic and acid phases, respectively. If the n-alkyls are enough long, the dialkyl part stays in the organic phase without tending to hydrolyse significantly. This method was applied as a synthetic route for longer (> C₅) tri-n-alkyls PEs, but preparation of desired starting mixed tetraester, containing *e.g.* three hexyl and one Prⁱ group, resulted in severe problems.^{5b} This method was also less favourable for the synthesis of any mono-n-alkyl or short (< C₅) di-n-alkyl PEs, since the separation of products from reagents and side products was troublesome.

³¹P NMR spectroscopy was used to follow the progress of the reactions and to analysize the purity of the products. The multiplicity of the ³¹P signals offered an unambiguous method to assign the amounts and the types of alkyls in each phosphorus atom. Also the ¹J_{CP} couplings for the middle carbon were sensitive to the number of ester groups on the phosphorus it was coupled to; being approximately 155 Hz for P(O)(OR)₂, 135 Hz for P(O)(OR)(OZ) and 110 Hz for P(O)(OZ)₂ fragments. For the molecules containing two Prⁱ esters on the same phosphorus atom the proton decoupled carbon spectra showed two β -CH₃ doublets, due to the different electronic environments of the β carbons. A corresponding situation with one Prⁱ and one cation showed only one signal, obviously due to rapid walk of the cation between the two anionic oxygens.

	S	Starting material				Reaction		Product					
Comp.	R1	<u>R2</u>	<u>R</u> 3	<u>R</u> 4	method	time	Comp.	R ¹	R ²	R ³	<u>Z</u>	Yield %	
1a	Pr ⁱ	Pr ⁱ	Pr ⁱ	Mie	A	15 min	4a	Pr ⁱ	Pr ⁱ	Pr ⁱ	Na	87	
1b	Pri	Pr ⁱ	Mie	Me	A	15 min	6a	Pr ⁱ	Pr ⁱ	Na	Na	88	
1 c	Pr ⁱ	Me	Me	Mc	Α	25 min	8a	Pr ⁱ	Na	Na	Na	80	
1 d	Ph	Ph	Me	Me	Α	20 min	6b	Ph	Ph	Na	Na	95	
le	Et	Et	Me	Me	A	5 min	6c	Et	Et	Na	Na	41	
1f	Et	Et	Et	Et	A	5h	8c	Et	Na	Na	Na	27	
1 g	Hex	Hex	Pr ⁱ	Pr ⁱ	В	130 min	6d	Hex	Hex	Na	Na	44	
1h	Bu	Bu	Pr ⁱ	Pri	В	130 min	6e	Bu	Bu	Na	Na	15 a	
1i	Et	Et	Pr ⁱ	Pri	В	130 min	6c	Et	Et	Na	Na	trace	
1j	Pri	Pr ⁱ	Pr ⁱ	Pri	С	4h	4a	Pr ⁱ	Pr ⁱ	Pri	Na	22	
1j	Pr ⁱ	Pr ⁱ	Pr ⁱ	Pr ⁱ	С	8h	7a	Pr ⁱ	Na	Pr ⁱ	Na	44	
<u> </u>	Pri	Pri	Pr ⁱ	Pri	С	10h	82	Pri	Na	Na	Na	15	

Table 1. Preparation of Cl₂MBP PEs from Mixed and Symmetric Cl₂MBP Tetracsters.

Methods: A) NaI, dry CH₃CN and Me₃SiCl were refluxed, the residue was dissolved in methanol, evaporated, adding NaOH and crystallized using $Pr^{i}OH/H_{2}O$. B) MeSO₃H in toluene were heated at 50°C, the toluene layer separated, washed with water, dried and evaporated and isolated as A. C) Refluxed in water and isolated as A. ^a Contained several impurities.

Acknowledgement: Professor R. Laatikainen is gratefully thanked for helpful discussions.

REFERENCES AND NOTES

- a) Fleisch, H. Drugs 1991, 42, 919; b) Kanis, J.A.; McCloskey, E.V. Prog. Basic Clin. Pharmacol. 1990, 4, 89; c) Hannuniemi, R..; Laurén, L.; Puolijoki, H. Drugs Today 1991, 27, 375; d) Papapoulos, S.E.; Landman, J.O.; Bijvoet, O.L.M.; Löwik, C.W.G.M.; Valkema, R.; Pauwels, E.K.J.; Vermeij, P. Bone 1992, 13, S41.
- 2. See e.g. Ebetino, F.; Degenhardt, C.; Jamieson, L.; Burdsall, D. Heterocycles 1990, 30, 855.
- a) Stock J. J. Org. Chem. 1979, 44, 3997; b) Vaghefi, M.M.; Bernacki, R.J.; Hennen, W.J.; Robins, R.K. J. Med. Chem. 1987, 30, 1391; c) Gilmore, W.F.; Huber, J. W. J. Org. Chem. 1973, 38, 1423; d) Wang, T.S.T. Nucl. Med. 1979, 18, 252; e) Lang, G.; Herrmann, E. Z. Anorg. Allg. Chem. 1986, 536, 187.
- a) Davisson, V.J.; Woodside, A.B.; Neal, T.R.; Stremler, K.E.; Muehlbacher, M.; Poulter, C.D. J. Org. Chem. 1986, 51, 4768. b) Stemler, K.E.; Poulter, C.D. J. Am. Chem. Soc. 1987, 109, 5542. c) Davisson, V.J.; Sharp, T.R.; Poulter, C.D. Bioorg. Chem. 1988, 16, 111.
- a) Vepsäläinen, J.; Nupponen, H.; Pohjala, E.; Ahlgren, M.; Vainiotalo, P. J. Chem. Soc. Perkin Trans.
 2 1992, 835; b) Vepsäläinen, J.; Nupponen, H.; Pohjala, E.; Vainiotalo, P. Ahlgren, M. Phosphorus & Sulfur 1992, 70, 183.
- 6. Procter & Gamble Co. Patent. NL 6,514,133 1967.
- 7. Hutchinson, D.W.; Thornton D.M. J. Organomet. Chem. 1988, 340, 93.
- 8. Kivikoski, J.; Garcia-Ruiz, J.M.; Vepsäläinen, J.; Pohjala, E.; Higes F.; Välisaari, J. J. Phys. D Appl. Phys. (In press); containing also the analyses of **4a**, **6a**, **7a** and **8a**.
- 9. McKenna, C.E.; Schmidhauser, J. J. Chem. Soc. Chem. Commun. 1979, 739.
- Product analyses. NMR: Bruker AM 400 WB, ³¹P, ¹³C and ¹H at 161, 101 and 400 MHz. Elemental analyses: Univ. of Joensuu, Dept. Chem. The purity of products were ≥95%.
 Silyl intermediates. NMR (CDCl₃): 2a (R¹=R²=R³=Prⁱ): δ_P 11.62, 0.63 (²J_{PP}=24.6 Hz). 3a (R¹=R²=Prⁱ): δ_P 7.50, -9.67 (²J_{PP}=24.3 Hz). 3b (R¹=R²=Ph): δ_P 2.03, -11.26 (²J_{PP}=26.6 Hz). 3c (R¹=R²=Et): δ_P 9.36, -9.81 (²J_{PP}=23.7 Hz). 5a (R¹=Prⁱ): δ_P -1.18, -9.71 (²J_{PP}=27.1 Hz).
 Partial Cl₂MBP esters. 6b: NMR (D₂O): δ_H 7.43 (4H, m), 7.31 (2H, m), 7.27 (4H, m); δ_C 152.81

 $({}^{2}J_{CP}=10.3 \text{ Hz})$, 132.86, 129.00, 123.94, 78.04 (d+d, ${}^{1}J_{CP}=154.6 \text{ and } 107.1 \text{ Hz})$; δ_{P} 11.0 (${}^{2}J_{PP}=14.7 \text{ Hz}$), 6.5. Calcd for C₁₃H₁₀Cl₂Na₂O₆P₂: H, 2.29; C, 35.40. Found: H, 2.33; C, 35.31.

6c: NMR (D₂O): $\delta_{\rm H}$ 4.16 (4H, m), 1.29 (t, 6H); $\delta_{\rm C}$ 78.96 (${}^{1}J_{\rm CP}$ =148.6 and 110.5 Hz), 69.38 (${}^{2}J_{\rm CP}$ =7.6 Hz), 18.8 (${}^{3}J_{\rm CP}$ =5.2 Hz); $\delta_{\rm P}$ 16.67 (${}^{2}J_{\rm PP}$ =15.5 Hz), 7.2. Calcd for C₅H₁₀Cl₂Na₂O₆P₂: H, 2.92; C, 17.41. Found: H, 2.89; C, 17.62.

6d: (Z=H): NMR (CDCl₃/CD₃CD₂OD): δ_P 11.89 (²J_{PP}=21.0), 5.27. (Z=Na, DMSO-D₆): δ_C 74.38 (d+d, ¹J_{CP}=147.9 and 132.9 Hz), 69.18 (²J_{CP}=7.3 Hz), 30.98, 30.20 (³J_{CP}=5.5 Hz), 24.79, 22.24, 14.1; δ_P 15.04 (²J_{PP}=17.3 Hz), 7.3. Calcd for C₁₃H₂₆Cl₂Na₂O₆P₂: H, 5.73; C, 34.15. Found: H, 5.83; C, 34.60.

8c: NMR (D₂O): $\delta_{\rm H}$ 4.16 (4H, m), 1.28 (t, 6H); $\delta_{\rm C}$ 83.13 (${}^{1}J_{\rm CP}$ =135.6 and 117.6 Hz), 67.07 (${}^{2}J_{\rm CP}$ =6.9 Hz), 19.27 (${}^{3}J_{\rm CP}$ =5.0 Hz); $\delta_{\rm P}$ 11.9 (${}^{2}J_{\rm PP}$ =15.4 Hz), 9.4. Calcd for C₃H₅Cl₂Na₃O₆P₂: H, 1.49; C, 10.63. Found: 1.53; C, 10.54.